
 Chaos 

Dynamical systems, fractals, and chaos are relatively new fields of mathematics. 

Many of the most important concepts were not discovered until high-speed 

computers made it easier to visualize iterative mappings. 

A dynamical system is one that changes over time, with its state at any moment 

computed from the state of the system at the previous moment. As the dynamical 

system evolves, sometimes its limiting state may approaches a specific fixed state (a 

point attractor), or may alternate among a set of fixed states (a periodic attractor). A 

limiting state that is neither a point attractor nor a periodic attractor is called a 

strange attractor. 

SIERPIŃSKI’S TRIANGLE AS AN ATTRACTOR 
 1. Open the sketch Chaos1.gsp in the folder Supplemental Activities | Chaos. 

Select the parameter depth and increase it using the + key. Be careful not to go 

too far. A depth of 7 should take the image to the limit of the screen resolution. 
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This figure may look familiar to you. It is Sierpiński’s triangle, a fractal. It is self-

similar and infinitely complex. As you will see, it can also act as a strange attractor. 

 Q1 Let p be the perimeter of the of the midpoint triangle added in the first iteration. 

What is the sum of the perimeters of the three triangles added in the second 

iteration? What is the sum of the perimeters of the triangles added in the third 

iteration? As the number of iterations grows, is there a limit to the sum of the 

perimeters added at each iteration? 

Repelling 
 2. Open the Repel page of Chaos1.gsp. Point P' is the dilation of point P by a 

factor of 2 about the nearest vertex. 

Q2 If this dilation is defined as an iteration rule, and point P is on the interior of the 

triangle, do you think the orbit will eventually leave the triangle? If so, how many 

iterations can remain in the triangle before the next iteration leaves? 

 The orbit of a object is 
the set of all iterated 
images of that object. 

 3. Select point P and the parameter depth. Hold the Shift key while choosing 

Transform | Iterate By Depth. Map point P to P’. Click the Iterate button in 

the dialog box to create the iteration. 
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Chaos (continued) 

 4. Construct the terminal point of the iterated point image by selecting the image 

and choosing Transform | Terminal Point. Label this point T. 

T

P'
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 Q3 Drag point P around to test your conjecture from Q2. Adjust the depth and see 

how many iterations you can keep inside the triangle. 

 Q4 Once an iterated point has left the triangle, is it possible for some subsequent 

iteration to return to the triangle? 

In fact, Sierpiński’s triangle is a repeller for this iteration rule. What that means is 

that any point that is actually on the fractal will have an orbit that never leaves the 

fractal. Any other point, however near, will eventually be cast out. 

Attracting 
Since the iteration rule avoids the fractal, perhaps running this iteration in reverse 

would attract the orbit to the fractal. A given orbit point is created by doubling the 

distance from the nearest vertex. We can get back to the previous point by halving the 

distance. However, there is no way of knowing which vertex was the center of dilation, 

so you’ll pick a vertex at random and halve the distance to that vertex. 

 5. Open the Attract1 page of Chaos1.gsp. The image of point P has three possible 

locations, depending on the position of point R. Drag point R to see each of the 

possible locations of P'. 

You will iterate P to P'. For each iteration, you will randomly choose the vertex toward 

which to dilate. 

 6. Select points P and R and the parameter depth. While holding the Shift key, 

choose Transform | Iterate To Depth. Map P to P' and R to itself. In order to 

make point R choose a new random vertex for each iteration, choose To New 

Random Locations from the Structure menu of the dialog box. 

 

 

To make the iterated 
image points small, 
select them and choose 
Display | Line Width | 
Dashed. 

7. Make the iterated image points small.  

Q5 The initial value of depth is 100. Describe the pattern formed by the iterated 

points. 

 Q6 Select the depth parameter and press the + key to increase the depth to about 

3000. Describe the pattern now. 
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Chaos (continued) 

 Q7 Drag point P to change the initial conditions of the iteration. What changes can 

you observe in the pattern?  

 Q8 At any particular step of the iteration, can you predict where the next point will 

be? Does this iteration have a point attractor, a periodic attractor, or a strange 

attractor? Explain your answer. 

 Q9 Change the properties of the iterated image so that the iterated images of point R 

move to the same location relative to the original, rather than to random 

locations. How does this change the image? Does it now have a point attractor, a 

periodic attractor, or a strange attractor? What happens if you drag point R? 

With a small change, you can produce the same pattern with far fewer iterations. 

 8. Open the Attract2 page of Chaos1.gsp. On this page all three possible image 

points have been constructed. 

To change the 
properties, select the 
iterated image and 
choose Edit | 
Properties. On the 
Iteration panel, click the 
button To Same 
Location Relative to 
Original. 

 9. Select point P and the parameter depth. While holding the Shift key, choose 

Transform | Iterate To Depth. Map P to one of the image points. Choose 

Add New Map from the Structure menu, and map P to one of the other image 

points. Choose Add New Map again, and map P to the third point. Finally, click 

Iterate. 

 10. Make the iterated points small. Hide the initial images of P, the three black 

points. Increase the depth—but do not enter too high a value, because the 

number of iterated objects increases exponentially. 
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 Q10 Are all of the iterated points on Sierpiński’s triangle? Are any of them? Try 

starting with point P near the middle of the triangle, clearly not on the fractal. 

Summarize 
You used two mappings here. The first mapping repels points from Sierpiński’s 

triangle, and the second and third attract points. In either case, given a starting point 

on or within a triangle, these two behaviors hold true: 

A point that begins on the fractal will stay on the fractal. 

A point that is not on the fractal will never reach the fractal (though the attraction 

mapping will cause it to approach the fractal). 

 Q11 Prove or demonstrate both statements. It is sufficient to show that for both 

mappings, if a point is on the fractal, so is the next point(s). 
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Chaos (continued) 

MIRA, JULIA, AND MANDELBROT SETS 

Mira Sets 
 1. Open the sketch Chaos2.gsp in the folder Supplemental Activities | Chaos. 

The Mira page contains an iteration based on a function f(x), using these equations: 
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Point P' is the first iterated image of P, plotted at (x', y'). Point T is the terminal point 

of the iteration. 

2. Experiment with small changes in parameters a and b. It is interesting to see 

that very small changes in the parameters can produce radical changes in the 

orbit. Drag point P to see what effect the initial seed has. 

 

 Q1 The initial settings for this sketch are a = 0.20, b = 1.00, and P (8.61, 2.97). With 

these settings, the orbit appears to be stable. As you experiment, record the 

settings for interesting figures you find. Which settings attract the orbit to a 

single point? Which make it periodically go between two or more points? Which 

send it out of range? 

If you select either a or 
b, pressing the + or – 
key will change the 
parameter’s value  
by 0.01. 

 

Julia Sets 
The Mira mapping is actually an offshoot from some research into the behavior of 

elementary atomic particles. The next page shows a Julia set, based on this mapping: 

x' = x2 - y2 + a,  y'= 2xy + b 

 3. Open the Julia Forward page of Chaos2.gsp. The construction is the same as 

that on the Mira page, but uses the equations above to define x' and y'. 

 Q2 The patterns are not generally as striking, but there are similar results. When is 

the orbit attracted to a single point? When does it jump between two or more 

points? When does it fly off the screen? Again, record settings of parameters a 

and b. 
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Chaos (continued) 

It turns out that this mapping repels a point from a Julia fractal. As before, the fractal 

is an attractor for the inverse of the mapping, as defined by the equations below. 

Notice that there are two values for x', and a y' corresponding to each step of the 

iteration. When performing the iteration backward, the path branches and the 

number of iterated points grows exponentially, swarming around the Julia fractal. 
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 4. Open the Julia Back page of Chaos2.gsp. 

Experiment by dragging point P and changing the parameters a and b. For certain 

settings, the fractal is in a single connected piece. For others, it is broken into discrete 

points. 

 

 Q3 What is the effect of dragging the starting point P across the screen? Does it 

change the overall shape? Does it alter the detail? 

 Q4 The abbreviation J(a, b) is used to refer to the fractal that comes from some 

specific settings for a and b. For each of the following fractals, describe it, 

identify its symmetries, and tell whether or not it is connected: J(-1, 0), J(0.3, 

0.8), J(0, 0), J(0, 1). 

 Q5 What general statement can be made about Julia fractals where b = 0? 

The Mandelbrot Set 
Benoit Mandelbrot divided the Julia fractals into two sets: those that are connected, 

and those that are disconnected. The parameters of the fractal can be imagined as 

point coordinates. Consider the set of points (a, b) such that J(a, b) is a connected 

fractal. That set of points is itself a fractal, the Mandelbrot set. There is a helpful 

shortcut for determining which points belong to the Mandelbrot set. Run the Julia 

mapping forward, using (a, b) as a starting point. If the orbit diverges, the fractal J(a, 

b) is disconnected. 

 5. Open the Julia Forward page of Chaos2.gsp again. Select parameter a. Choose 

Edit Parameter from the Edit menu. Delete the existing value in the 

Calculator, and click in the sketch on measurement xP. Use the same procedure 

to set parameter b to yP. 
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Chaos (continued) 

As you drag point P across the screen, the orbit changes rapidly. When it clearly 

converges on one or more points, point P is in the Mandelbrot set. Drag P until the 

orbit appears to explode. That point is near the boundary of the set. 

 
 

 6. Select point T and the origin point. Choose Measure | Coordinate Distance. 

Hide T and the iterated images. Reduce the depth to about 50. 

 7. Choose the custom tool Less than 2. Click on point P and then on the 

measurement that you created in the previous step. 

 8. Switch back to the Arrow tool and drag point P. 

Point P now leaves a black trail whenever T is within 2 of the origin. Once T has 

exceeded that radius, it can never return. If the orbit is still within 2 after 50 

iterations, the seed (point P) probably belongs to the Mandelbrot set. Drag point P 

across the screen to color a rough approximation of the set. 

1
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EXPLORE MORE 
Even such a rough graphical rendering of the Mandelbrot set was not possible until 

the development of high-speed computers, but it was possible to draw conclusions 

about the orbits of certain individual points. Calculate the images of point (0, 0) after 

the first and second iterations. Do the same for the point (-1, 0). Prove that these 

points are in the set. Try some other points on the x-axis. 
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CHAOS 
Objective: Students create various fractal designs  

involving strange attractors. In the first part they create 

the Sierpiński triangle, and in the second they create 

and explore Mira, Julia, and Mandelbrot fractals. 

Prerequisites: Students will find this activity easier if 

they have already encountered some of the concepts 

and terminology of mathematical iteration (for 

instance, pre-image, image, seed, orbit, and mapping). 

Sketchpad Proficiency: Intermediate. Students 

create iterations, but with the necessary objects 

prepared in advance. 

Class Time: 30–40 minutes for each part. Each part 

stands on its own. It’s probably best to give students a 

day or two to digest the first part of the activity (the 

Sierpiński triangle) before moving to the second part of 

the activity (Mira, Julia, and Mandelbrot sets). 

Required Sketches: Chaos1.gsp, Chaos2.gsp 

Example Sketch: Chaos1 Work.gsp,  

Chaos2 Work.gsp 

SIERPIŃSKI’S TRIANGLE AS AN ATTRACTOR 
Q1 If the perimeter of the first midpoint triangle is p, 

the three triangles of the second iteration have a 

combined perimeter of 3p/2, and the triangles of 

the third have a combined perimeter of 9p/4. The 

terms constitute a geometric sequence with a ratio 

of 3/2. The sum of the perimeters in the nth 

iteration is p (3/2)n-1. These terms increase  

without limit. (Although the activity does not 

discuss the concept of fractal dimension, this  

ratio corresponds to a fractal dimension of 

log 3 / log 2 ≈ 1.58.) 

Repelling 
Q2 Conjectures will vary. Students use the actual 

sketch to investigate these questions in Q3.  

Q3 The orbit will stay in or on the triangle only if it 

begins from a point on the fractal. Drag point P 

slowly to find a “sweet spot.” With a bit of work it is 

possible to make as many as 15 iterations stay in 

before the orbit leaves. If you could drag P by 

moving the mouse less than a pixel at a time, you 

could get closer to the fractal and keep more 

iterations inside the triangle. 

Q4 Once an iterated point has left the triangle, no 

subsequent iteration can return to the triangle. 

Dilating a point outside the triangle about any 

vertex results in an image point that is farther from 

the triangle than the pre-image point was. 

Attracting 
Q5 No pattern is yet visible with only 100 iterations. 

Q6 With 3000 iterations, the shape of the Sierpiński 

triangle is filmy but clearly identifiable. The larger 

open triangles are quite prominent. 

Q7 Dragging P has very little effect on the image. If P 

is in an area far from the fractal (for instance, in 

the middle of the largest midpoint triangle), you 

can identify the first few iterations, because they 

are near the middle of their respective 

(successively smaller) triangles. Dragging P has no 

visible effect beyond these first two or three 

images. 

Q8 At any particular step, you cannot predict where 

the next point will be, because the position of the 

next point is determined by a random process. As a 

result, the iteration has a strange attractor. 

Q9 By making the position of R consistent from one 

iteration to the next, the process always picks out 

the same vertex. The chosen vertex is a point 

attractor for the iteration. Dragging point R 

changes which of the three vertices of the triangle 

serves as the point attractor. 

Q10 If you drag point P to a spot that’s clearly not on 

the fractal, it’s clear that the first images of P are 

also not on the fractal. In fact, none of the image 

points lies on the fractal. The fractal is visible only 

because the image points are increasingly close to 

it, although never actually on it. 

Summarize 
Q11 Sierpiński’s triangle is self-similar. Dilating it with 

respect to one of the vertices, by factor 1/2, maps 

the entire fractal onto itself. Hence, any point on 

the fractal is mapped to the fractal. Dilating by a 

factor of 2 maps the nearest of the three sections 

onto the whole fractal. 
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Chaos (continued) 

MIRA, JULIA, AND MANDELBROT SETS 
You may want to introduce students to the shape and 

properties of the Mandelbrot set before beginning this 

activity. Several programs, books, and video 

presentations are available for this. 

Mira Sets 
Q1 Answers will vary, with each student trying 

different parameter values and different positions 

of point P. You may want to have students print 

their more interesting images. The orbit diverges 

when a or b is greater than one. Experiment with 

the settings below for some interesting images. 

With some settings, the position of point P has 

little effect on the overall image. With others, the 

effect is significant. 

a b 

-0.05 1.00 

-0.01 0.99 

-0.75 0.92 

0.99 0.99 

0.94 0.91 

Q2 Try the settings below and experiment with others. 

The position of point P has a great deal of influence 

on whether the orbit converges, but it does not 

appear to change the attractor point(s). 

a b 

0.32 0.39 

0.25 -0.44 

-0.97 0.23 

Q3 When you drag point P, the overall shape does not 

change, but the detail does. 

Q4 All Julia fractals have 180° rotational symmetry on 

the origin. 

J(-1, 0) reflection symmetry on both axes, 

connected 

J(0.3, 0.8) disconnected 

J(0, 0) a circle centered on origin, 

unlimited number of rotation and 

reflection symmetries, connected 

J(0, 1) connected 

 

Q5 When b = 0, the fractal has reflection symmetry on 

both axes. 

The Mandelbrot Set 
The rendering of the Mandelbrot set created in this 

activity is rather crude, but so was the first version 

created by Benoit Mandelbrot himself. Students can 

trace the figure more easily if they first see a finished 

picture. However, if you give them time to find it 

themselves, they may share a certain sense of discovery. 

EXPLORE MORE 
pre-image 1st image 2nd image 

(0, 0) (0, 0) (0, 0) 

(-1, 0) (0, 0) (-1, 0) 

The point (0, 0) continues to be mapped onto itself no 

matter how many iterations. The point (-1, 0) is 

mapped to (0, 0), then back, then continues to jump 

between these two points. 

RELATED ACTIVITY AND SKETCH 
The related activity The Mandelbrot Set enables 

students to create and explore the Mandelbrot set.  

The sketch that accompanies that activity 

(Mandelbrot.gsp) shows for a more detailed 

rendering of the Mandelbrot set and allows students 

to zoom in on any portion of the rendering to see the 

fractal boundary in more detail. 
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