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Graphing Calculator Tools for Sketchpad 
Bjørn Felsager, Bjoern.Felsager@haslev-gym.dk, 2004 

 

Since Sketchpad 4 is fully equipped with a graphing calculator – including the 
option of symbolic differentiation – it is now even possible to include a tool 
package for investigating function graphs with respect to roots, max/min, 
slopes, areas etc. Such a tool package will turn Sketchpad into a fully equipped 
graphing calculator allowing you to investigate numerically as well as dynami-
cally most standard problems in elementary calculus. The tool package con-
sists of an ordinary Sketchpad file with the extension .gsp having the name 
Graph Tools. You can download it from the official website of Sketchpad  
www.keypress.com/sketchpad. If you download the file Grap Tools.gsp into 
the folder Tool Folder these tools are automatically included when you open 
the program. But you can also open the file and run it in the background of a 
sketch, when you want to have access to the tools: 
 

 
 

As you can see the package includes 11 standard tools which naturally fall into 
two groups: The first 7 tools deal with various applications of differentiation 
(typically invoking Newton's method). The last 4 tools deal with integration. 
Since Sketchpad are capable of performing differentiation symbolically it is 
fairly trivial to implement the first 7 tools. On the other hand no integration 
methods are supplied. Such numerical methods are less trivial to implement. 
They are partly explained in the sample documents about Riemann sums that 
are included with the program, and partly in an appendix devoted to the 
mathematics behind the Gauss summation method.  
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First part: Graph tools using differentiation 
 

1. Root:  
 

To determine a root we use Newton's method with 10 iterations 
 

( )
'( )

f xx x
f x

→ −  

 

This presupposes a seed point fairly close to the desired root. 
  

When selecting the root tool you must therefore first select the function ( )f x  
and then select a seed point close to the root. Once the function has been se-
lected the root pops up close to the mouse pointer together with is coordinates. 
 

1 step: Select the function: 
 

 
 

2 step: Point out the root: 
 

 
 

Remark: The y-coordinate is displayed as a check. 
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2. Intersection:  
 

To determine the intersection points for two graphs we use Newton's method 
with 10 iterations to solve the equation ( )f x  = ( )g x : 
 

( ) ( )
'( ) '( )

f x g xx x
f x g x

−
→ −

−
 

 

This presupposes that you select a seed point fairly close to the desired inter-
section point.  
 

When selecting the intersection tool you must therefore first select the two 
functions ( )f x  and ( )g x  and then point out a seed point close to the intersec-
tion point. Once the functions have been selected the intersection point pops 
up close to the mouse pointer together with is x-coordinate as well as the val-
ues of ( )f x  and ( )g x  (as a numerical check of the equation solving). 
 
1 step: Select the functions ( )f x  and ( )g x : 
 

 
 

2 step: Point out the intersection point: 
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3. Max/Min:  
 
To determine stationary points we use Newton's method with 10 iterations to 
solve the equation '( ) 0f x = : 
 

'( )
''( )

f xx x
f x

→ −  

 

This presupposes a selection of a seed point fairly close to the desired station-
ary point.  
 

When selecting the max/min tool you must therefore select the function ( )f x  
and then point out a seed point close to the stationary point. Once the function 
has been selected the stationary point pops up on the screen close to the 
mouse pointer together with its coordinates. 
 
1 step: Select the function: 
 

 
 

2 step: Point out the extremum: 
 

 
 



 5

4. Tangent:  
 

To determine a tangent we use its slope 0'( )f x  as well as its point of contact 

( )0 0, ( )x f x . This leads to the displaced point on the tangent: 

( )0 0 01, ( ) '( )x f x f x+ +  
When selecting the Tangent tool you must therefore first select the function 

( )f x  and then point out the point of contact for the tangent. Once you have 
selected the function the tangent pops up on the screen at the graph point with 
the same x-coordinate as the mouse pointer together with the equation of the 
tangent as well as the x-coordinate for the point of contact. 
 
1 step: Select the function: 
 

 
 

2 step: Point out the point of contact for the tangent: 
 

 
 

Remark: The above tangent has been constructed as a geometric line. If you 
need the tangent as a graph of a taylor polynomial (e.g. to be able to compute 
intersection points with the tangent) you should plot a new function entering 
the symbolic equation for the tangent instead: 0 0 0( ) '( ) ( )f x f x x x+ ⋅ − . 
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5. Tangent of inflection:  
 

To determine a point of inflection together with its associated tangent we use 
Newton's method with 10 iterations to solve the equation ''( ) 0f x = : 

 

''( )
'''( )

f xx x
f x

→ −  

 

This presupposes that you select a seed point fairly close to the desired inflec-
tion point.  
 

When selecting the inflection tool you must therefore select the function ( )f x  
and then point out the inflection point. Once you have selected the function the 
inflection point with its associated tangent pops up on the screen close to the 
mouse pointer together with its equation as well as the coordinates of the point 
of inflection. 
 
1 step: Select the function: 

 

 
 

2 step: Point out the point of inflection: 
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6. Normal:  
 

To determine a normal we use its slope 01/ '( )f x−  and its foot ( )0 0, ( )x f x  as well 
as the displaced point: 

0 0
0

11, ( )
'( )

x f x
f x

⎛ ⎞
+ −⎜ ⎟

⎝ ⎠
 . 

When selecting the normal tool you must therefore select the function ( )f x  
and then point out the foot of the normal. Once you have selected the function 
the normal with its foot pops up on the screen at the graph point with the 
same x-coordinate as the mouse pointer together with the equation of the nor-
mal as well as the x-coordinate of the foot. 
 

1 step: Point out the function: 
 

 
 

2 step: Point out the foot of the normal: 
 

 
 

Remark: The above normal has been constructed as a geometric line. If you 
need the normal as a graph of a first order polynomial (e.g. to be able to com-
pute intersection points with the normal) you should plot a new function enter-

ing the symbolic equation for the normal instead: 0 0
0

1( ) ( )
'( )

f x x x
f x

− ⋅ − . 
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7. Curvature:  
 

To determine the center of curvature we use its coordinates: 
 

( ) ( )2 20
0 0 0 0

0 0

'( ) 11 '( ) , ( ) 1 '( )
''( ) ''( )

f xx f x f x f x
f x f x

⎛ ⎞
− ⋅ + + ⋅ +⎜ ⎟

⎝ ⎠
 

 

When selecting the curvature tool you must therefore select the function ( )f x  
and then point out the point of contact for the curvature circle. Once you have 
selected the function the curvature circle with its centre pops up on the screen 
at the graph point with the same x-coordinate as the mouse pointer together 
with the equation of the circle as well as the coordinates of the centre and the 
radius of the circle. 
 

1 step: Select the function: 
 

 
 

2 step: Point out the point of contact: 
 

 
 
Remark: The curvature centre is a point on the normal. In fact it is the limiting 
point of the intersection between neighboring normals. 
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Methods of integration: Some general remarks 
 

To calculate numerically a definite integral  
 

( )
b

a
f x dx∫  

 

we use Gauss' 3-point method which is as simple to implement as Simpson's 
3-point method, but which is far more accurate. It is based upon the approxi-
mate summation: 

 

3 35 1 8 5 1
18 2 5 2 2 5
h h h hf a f a f a

⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞⎜ ⎟⋅ ⋅ + ⋅ − + ⋅ + + ⋅ + ⋅ +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠
 

 

where h denotes the length of the interval, i.e. h = b – a.  
 
According to how well behaved the function is you can obtain a reasonably 
value using only a limited number of partitions. If the function is smooth and 
slowly varying across the interval the value of the Gauss sum will typically sta-
bilize after only 3-4 partitions. So for smooth functions 10 partitions will typi-
cally suffice. But if the function is rapidly varying or perhaps only piecewise 
smooth or have a vertical tangent you may need more partitions e.g. 100 parti-
tions to stabilize the Gauss sum at its limit.  
 
For these as well as other technical reasons the number of partitions is part of 
the tool! Before you can evaluate a definite integral numerically you must 
therefore first introduce a parameter N (or use a calculation or a measurement 
to compute the value of the parameter), which denotes the number of parti-
tions of the domain of the integral.  
 
This has both benefits and draw backs. Among the benefits are the following: 
 

1. The user is reminded that the calculation is based upon a numerical ap-
proximation and not some kind of symbolic evaluation. 

 

2. The user can check the accuracy of the calculation by doubling up the 
number of partitions. If the value of the integral approximation changes 
you must continue doubling up the parameter until the value is stable. 
In this way the experienced user can guarantee the accuracy of the re-
sult, while the inexperienced user can use a fairly high number, e.g. 100, 
and hope everything will still work out okay. 

 

3. If the integral is used in further constructions e.g. a locus, it is important 
to keep down the number of partitions in order to keep the computation 
time low as well (the same holds for the number of points on the locus). 
But then it is clearly advantageous that you can select the number of 
partitions yourself, so that the computations is executed fast, while mak-
ing it possible to check visually that the locus has stabilized on the 
screen. 

 
Conclusion:  
 

When you want to integrate you must therefore always remember 
to first introduce a parameter N denoting the number of partitions! 
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8. Integral with one function:  
 

If e.g. you want to find the area of a standard region enclosed by a graph of a 
positive function f, the x-axis and two vertical lines x = a and x = b, you must 
compute the definite integral: 

( )
b

a
f x dx∫  . 

When selecting the integration tool you must therefore select a function as 
well as the number of partitions. Then you must point out the initial point A 
and the final point B. The region corresponding to the integration is hatched in 
a brown color for the part of the region above the x-axis and a blue color for the 
part below the x-axis. The area of the brown region contributes positively to the 
integral, while the blue region contributes negatively to the integral. The 
boundary values of the integration domain as well as the (approximate) integral 
are displayed. Remember that the initial point must lie to the left of the final 
point – unless you want to integrate backwards resulting in the opposite sign.  
 
1 step: Select the function ( )f x  as well as the number of partitions N: 
 

 
 

2 step: Point out the initial and final boundary points : 
 

 
 

Remark: The difference between the area of the brown region and the area of 
the blue region is thus 0.97033. 
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9. Integral between two fcts:  
 

To find the area enclosed between the graphs of two functions f and g requires 
the computation of an integral of the form: 

( )( ) ( )
b

a
f x g x dx−∫  

When selecting the Integration between two functions tool you must there-
fore first select the two functions ( )f x  and ( )g x  as well as the number of parti-
tions N. Then you must point out the initial point A and the final point B. The 
region corresponding to the integration is hatched in a brown color for the part 
of the region where the graph of f is the upper graph and a blue color for the 
part where the graph of g is the upper graph. The area of the brown region con-
tributes positively to the integral, while the blue region contributes negatively 
to the integral. The boundary values of the integration domain as well as the 
(approximate) integral are displayed. Remember that the initial point must lie 
to the left of the final point – unless you want to integrate backwards resulting 
in the opposite sign.  
 
1 step: Select ( )f x  and ( )g x as well as the number of partitions N: 
 

 
 

2 step: Point out the initial and final boundary points: 
 

 
 

Remark: The difference between the area of the large brown region and the 
small blue region is thus 2. 
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10. Arc length:   
 

To determine the arc length of an arc corresponding to a section of a graph of a 
differentiable function f , with the arc starting at x = a and ending at x = b, you 
must compute the integral: 

 

21 '( )
b

a
f x dx+∫  

 

When selecting the arc length tool you must therefore select the function ( )f x  
as well as the number of partitions N. Then you must point out the initial point  
A as well as the final point B for the arc. The section of the graph correspond-
ing to the arc is colored brown. The boundary values of the integration domain 
as well as the (approximate) arc length are displayed. Remember that the initial 
point must lie to the left of the final point – unless you want to integrate back-
wards resulting in the opposite sign. 
 
1 step: Select the function ( )f x  as well as the number of partitions N: 
 

 
 

2 step: Point out the initial and final boundary points: 
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11. Antiderivative:  
 
To be able to draw the graph of the antiderivative (primitive) ( )F x  associated 
with a given function ( )f x  as a locus, you must first compute the integral: 
 

0
0( ) ( )

x

x
F x y f t dt= + ∫  . 

 

When selecting the antiderivative tool you must therefore first select the 
function ( )f x  as well as the number of partitions N. Then you must select an 
initial point (x0, y0) for the graph of the antiderivative as well as an end point 
for the domain of the antiderivative. The graph of the antiderivative is drawn as 
a locus together with the domain on the x-axis. If you want to draw the part of 
the graph prior to the initial point you simply choose the end point to the left of 
the initial point.  
 
1 step: Select the function ( )f x  as well as the number of partitions N: 
 

 
 

2 step: Point out the initial and final boundary points: 
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Appendix:  
The Gauss' 3-point method for numerical integration 
Numerical integration is based upon an approximation of the integral with a 
weighted average of the form: 
 

( )1 1 2 2( ) ( ) ( ) ... ( ) ( )
b

n na
f x dx p f x p f x p f x b a= ⋅ + ⋅ + + ⋅ ⋅ −∫  

 

There exist a variety of strategies for how to select the partition points x1, ... , xn  
as well as the weight factors p1, ..., pn. To make a judgment of how accurate the 
method is we use the following family of test integrals  
 

1 1 1 1 12 3 4

1 1 1 1 1
1 , , , , , ...dx x dx x dx x dx x dx

− − − − −
⋅ ⋅ ⋅ ⋅ ⋅∫ ∫ ∫ ∫ ∫  

 

If the numerical integration technique works out the actual values of the first 
n+1 test integrals, i.e. up to the integral  
 

1

1

nx dx
−

⋅∫  , 
 

then it turns out it will actually integrate any polynomial of degree n accurately 
over any interval [a;b]. The particular technique for numerical integration is 
then said to be of order n+1. 
 
Simpson's method 
Simpson's method belongs to a family of methods using an equidistant parti-
tion of the integration domain. Simpson's method is a 3-point method, i.e. it 
uses the partition points -1, 0 and 1. For reasons of symmetry it uses symmet-
rical weights, i.e. the Simpson method is based upon a weighted average of the 
form  

(p · f (–1) + q · f (0) + p · f (1))·2 . 
 

The symmetry takes care of all the test integrals of odd order. As regards the 
test integrals of even order we obtain: 
 

( )
1

1
2 1 2dx p q p

−
= ⋅ ≈ + + ⋅∫  

( )1 2 2 2 22
3 1

( 1) 0 1 2 2 2x dx p q p p
−

= ⋅ ≈ ⋅ − + ⋅ + ⋅ ⋅ = ⋅∫  
 

It follows that we must select the following values of the weight factors p and q: 
 

2 · p + q = 1 and  2 · p = 1
3  . 

 

The first condition simply states that the sum of the weight factors as expected 
must be 1. The other condition tells us that p = 1/6 and consequently q = 2/3. 
Simpson's method is thus based upon the following approximation: 
 

( ) 4 ( ) ( )1 2 1 2( ) ( ) ( ) ( ) ( ) ( )
6 3 2 6 6

b

a

a bf a f f ba bf x dx f a f f b b a b a

+
+ ⋅ ++⎛ ⎞⋅ ≈ ⋅ + ⋅ + ⋅ ⋅ − = ⋅ −⎜ ⎟

⎝ ⎠∫
 

As we see Simpson's method is a fourth order method i.e. it calculates inte-
grals of cubic polynomials accurately.  
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As an example of Simpson's method for numerical integration we look at the 
following simple definite integral: 
 

cos( ) 4 cos(0) cos( ) 0 4 1 02 cos( ) 2.094...
6 6

x dx
π
2

π
2

π π
2 2

−

− + ⋅ + + ⋅ + 2π
= ⋅ ≈ ⋅ π = ⋅ π = =

3∫  
 

The relative error is thus approximately 5%. Notice by the way that Simpson's 
method corresponds to replacing π with 3!  
 
Gauss' method 
Gauss improved Simpson's method by using his freedom to choose a more ap-
propriate set of partition points. Like Simpson's method Gauss' method is a 3-
point method with a symmetrical choice of partition points, i.e. Gauss' method 
uses the partition points -x, 0 and x. For reasons of symmetry the weight fac-
tors are also symmetrical, i.e. Gauss' method is based upon a weighted average 
of the following form: 
 

(p · f (-x) + q · f (0) + p · f (x))·2 
 

As before the symmetry takes care of all tests integrals of odd order. As regards 
the test integrals of even order we obtain: 
 

( )
1

1
2 1 2 (2 ) 2dx p q p p q

−
= ⋅ ≈ + + ⋅ = ⋅ + ⋅∫  

( )1 2 2 2 2 22
3 1

( ) 0 2 2 2x dx p x q p x p x
−

= ⋅ ≈ ⋅ − + ⋅ + ⋅ ⋅ = ⋅ ⋅∫  

( )1 4 4 4 4 42
5 1

( ) 0 2 2 2x dx p x q p x p x
−

= ⋅ ≈ ⋅ − + ⋅ + ⋅ ⋅ = ⋅ ⋅∫  
 

It follows that the weight factors p and q must satisfy the conditions: 
 

2 · p + q = 1,   2 · p · x2 = 1
3   and  2 · p · x4 = 1

5  . 
 

The first condition simply states that the sum of the weight factors as expected 
must be 1. The other conditions simplify to  
 

2 1
6p x⋅ =   and  4 1

10p x⋅ =  
 

By division we obtain the equation 
1

2 10 3 3
5 51

6

x x= = ⇒ = . Substituting this into 

the first condition we similarly get 3 51
5 6 18p p⋅ = ⇒ = . This leads to 8 4

18 9q = =  . 
Gauss' method is thus based upon the following approximation: 
 

3 31 5 5

1

5 ( ) 8 (0) 5 ( )
( ) 2

18
f f f

f x dx
−

⋅ − + ⋅ + ⋅
⋅ ≈ ⋅∫  

 

When applied to an arbitrary domain of integration [a;b] we use that 0 corre-
sponds to the centre of the domain, i.e.  

2
a b+ , 

whereas 1 corresponds to the radius of the domain, i.e.  

2
b a− . 

Thus the above formula is extended in the following way: 
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3 35 ( ) 8 ( ) 5 ( )
2 2 5 2 2 2 5( ) ( )

18
b

a

a b b a a b a b b af f f
f x dx b a

+ − + + −
⋅ − ⋅ + ⋅ + ⋅ + ⋅

⋅ = ⋅ −∫  

 
It follows that Gauss' 3-point method is a sixth order method, i.e. it calculates 
integrals of quintic polynomials accurately.  
 
As an example of Gauss' method for numerical integration we look at the same 
simple definite integral as before: 
 

3 3
5 5

3
5

5 cos( ) 8 cos(0) 5 cos( )
2 cos( )

18
5 cos( ) 4

2.0013889...
9

x dx
π
2

π
2

π π
2 2

−

π
2

⋅ − ⋅ + ⋅ + ⋅ ⋅
= ⋅ ≈ ⋅ π

⋅ ⋅ +
= ⋅ π =

∫
 

 

The relative error is thus below 1‰.  
 
As claimed Gauss' method is thus much more accurate than Simpson's 
method. Despite the somewhat clumsy choice of partition points it is therefore 
clearly preferable to use Gauss' method for numerical integration. There are 
even theoretical advantages: Since Gauss' method avoids using the boundary 
points for the estimation it can also handle integrands with vertical asymptotes 
at the boundary.  
 


